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Abstract:  Keyword 
In this article we investigated the effects of quantizing magnetic field 

and temperature on Fermi energy oscillations in nanoscale 

semiconductor materials. It is shown that the Fermi energy of a 

nanoscale semiconductor material in a quantized magnetic field is 

quantized. The distribution of the Fermi-Dirac function is calculated in 

low-dimensional semiconductors at weak magnetic fields and high 

temperatures. The proposed theory explains the experimental results in 

two-dimensional semiconductor structures with a parabolic dispersion 

law. 
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I. Introduction 

At present, the interest in studying the properties of two-dimensional electronic systems is 

due to the prospects for their application in nanoscale semiconductor structures. In such 

systems, the quantum dimensional quantities of the dependence of the characteristics have, 

as a rule, an oscillating character [1-10]. In two-dimensional semiconductors, macroscopic 

energy characteristics such as the density of states, effective masses of electrons, and the 

Fermi energy depend on the thickness of the quantum well. It is assumed that the size of 

the thickness of the material d will be commensurately equal to the de Broglie wavelength 

of the electron in low-dimensional semiconductors. 

As is known, the energy spectrum of electrons has highly variable properties depending on 

the relative position of the Fermi level with respect to the Landau levels in two-dimensional 

semiconductors in the presence of a quantizing magnetic field. All electron gases have a 

single Fermi level , which at absolute zero temperature determines the level of filling the 

energy bands with electrons. As is known from the experimental and theoretical data [11-

16], in two-dimensional semiconductors, the Fermi surface at absolute temperature is 

characterized by rather high amplitudes of the Fermi energy () oscillations. However, for 

a three-dimensional electron gas,  oscillations will be very weak, even at low 

temperatures. In three-dimensional semiconductors,  changes only linearly, as in classical 

magnetic fields.  

When studying the electronic and magnetic properties of two-dimensional electronic 

systems, an important characteristic is the Fermi energy, which determines the main 
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contribution to micro-and nanoscale semiconductors. Therefore, the aim of this work is to 

research the effect of  quantizing the magnetic field on the dimensional oscillations of the 

Fermi energy in two-dimensional semiconductor structures and to discuss the results of 

processing experimental data under the influence of an external action. 

 

II.  THEORETICAL PART 

2.1. Effect of a quantizing magnetic field on the Fermi energy oscillations in two-

dimensional semiconductors 

In k-space isoenergic surfaces E(k)=const are closed and are represented in the form of a 

sphere. The allowed energy states have a constant density V/8π3 and are distributed in k-

space. Here, V is the volume of the crystal. Since two opposite orientations of the spin of 

the electron state are responsible for each value of k, then the wave numbers of all states 

that will be filled have values no more than kF in the volume of the crystal V, according to 

the Pauli principle and kF is determined [17]: 
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Here, N3d is the electron concentration for a three-dimensional electron gas.  

If the system of electrons is due to the Fermi-Dirac statistics, then the energy in the ground 

state, i.e., at absolute temperature, is called maximum: 
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EF - called Fermi energy for 3D electron gas. The Fermi surface will have a spherical shape 

with a radius of kF for the isotopic dispersion law. The expressions given above were 

obtained only for bulk materials and do not consider changes in the oscillations of the Fermi 

energy in two-dimensional electron gases. 

Now, consider the dependence of the Fermi energy on the quantizing magnetic field in two-

dimensional electron gases. In the absence of a magnetic field in two-dimensional electron 

gases, the electron energy is quantized along the Z-axis, so the electron moves freely only 

in the XY plane. These quantizations are called dimensional quantization. However, if the 

magnetic induction B is directed perpendicular to the XY plane, then the free energy of the 

electron is also quantized along the XY plane. 

The question arises: how will the Fermi energy change in two-dimensional electron gases 

in the presence of a quantizing magnetic field. 

For a 2D electron gas, the allowed energy states have a constant density S/4π2 and are 

distributed in the XY plane. Here, S is the surface area of the crystal. Then, using formulas 

(1) and (2), we determine the electron concentration for a two-dimensional electron gas: 
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From here: 
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Now, we calculate the Fermi energy for a two-dimensional electron gas with parabolic law. 

Substituting (5) to (6), one can determine the Fermi energy in two-dimensional electron 

gases in the absence of a magnetic field: 

2 2 2
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22 4

d
d

p N

m mL

 
 = =                (6) 

Here, N2d is the concentration of electrons in a two-dimensional electron gas, L2 is the 

surface of the plane of motion, p  is the Fermi momentum. 

In the motion of a plane perpendicular to the magnetic field, the classical trajectories of 

electrons are circles. In quantum physics, such trajectories of electrons (periodic rotation 

of an electron) are equidistant discrete Landau levels: 

1

2
n c LE n
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= + 

 
     (7) 

Where nL is the number of Landau levels. 
c

eH

mc
 = - cyclotron frequency. 

In three-dimensional semiconductors, a continuous quadratic energy spectrum of the 
2

2

zp

m
 

is added to the energy spectrum of formula (7). However, in two-dimensional 

semiconductors, the movement of electrons along the Z-axis is quantized. 

Indeed, the thickness of the quantum well d is covered by the dimensional quantization 

condition, in other words, the thickness is relatively close to the de Broglie wavelength of 

the electron in the crystal. The movement of an electron along the Z axis is calculated from 

the potential Vz: 

0, 0 ,
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In the absence of a magnetic field in two-dimensional electron gases, the normalized wave 

functions of particles have the following form [7]: 

, ,
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Where kfx, kfy are the wave numbers for the Fermi energy of electrons, nfz is the number of 

dimensional quantizers along the Z axis. 

In formula (9), the normalized functions in accordance with (8) are written in the following 

form: 

2
( ) sin , 1,2,3...nz

nz
z n

d d


 = =     (10) 

The Fermi energy of electrons corresponding to state (9) will be 
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Substituting expressions (7), (11) into (6), we obtain the following formula in the presence 

of a magnetic field: 
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For an area equal to one (LxLy=1) of formula (12), the following is calculated: 
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Here 
22 ( )dcN H

eH


 =  is the filling factor [18]. This is the number of Landau levels, taking 

into account their spin splitting, in a quantizing magnetic field, at absolute zero 

temperature, filled with electrons. This dimensionless parameter is used to facilitate the 

discussion of quantum oscillatory effects in 2D electron gases. 

As can be seen from formula (13), the Fermi energies are quantized if the filling factor is 

an integer, then the minimum energy quantum will be 1

8
c , that is, formula (13) gives the 

exact value of the energy for the first level corresponding to the 1 = . 
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For all other levels, the rigorous theory gives the expression 
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Here, the filling factor is an integer 0,1,2,3... =   

In addition, in two-dimensional semiconductors, in the presence of a quantizing magnetic 

field, the energy spectrum of electrons is purely discrete. A purely discrete energy 

spectrum, in this case the Fermi energy, is usually characteristic of a quantum dot. In this 

case, the magnetic induction vector will be directed along the Z axis and perpendicularly 

along the plane of the transverse two-dimensional layer. In a transverse quantizing 

magnetic field, quantum wells become analogous to a quantum dot, in which the motion is 

limited in all three directions. 

 

2.2. Dependence of Fermi energy oscillations on the thickness of the quantum well and 

on temperature in a quantizing the magnetic field 

It can be seen from the obtained formulas (15) that the Fermi energies depend strongly on 

the magnetic field, on the concentration of electrons, and on the thickness of the quantum 

well. In quantizing the magnetic field, the electron concentration in the considered two-

dimensional semiconductors is determined as follows [19]: 
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Here ( )2 , ,d

S LN E H n  is the density of states of two-dimensional electronic systems under the 

influence of a quantizing magnetic field; ( )0 , ( 0),Ff E E H T=  is the Fermi-Dirac distribution 

function in the absence of a magnetic field. 

In two-dimensional electronic systems, the energy density of states is taken as the sum of 

Gaussian peaks in the presence of a magnetic field, disregarding spin splitting [19]: 
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G is the parameter of broadening, taken constant. Here we consider two-dimensional 

electronic systems of noninteracting electrons according to the parabolic dispersion law at 

a finite temperature T, in the presence of a quantizing magnetic field B parallel to the growth 

direction. 

And, two features should be highlighted here. First, in addition to the Gaussian peak in the 

density of states, at each Landau level, there is a common magnetic field factor B in front 

of the total energy density of states. This means that as the magnetic field B increases, each 

Landau level can contain increasing electrons. Secondly, according to the form taken in the 

formula. According to (17), there is no density of states between the Landau levels if their 

distance hωc is noticeably greater than G. 

Using expressions (15), (16), and (17), one can determine the dependence of the Fermi 

energy oscillations on the magnetic field, temperature, and thickness of the quantum well 

in two-dimensional semiconductors with a parabolic dispersion law without taking into 

account the spin per unit surface of the plane of motion: 
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Thus, using formula (18), one can calculate the dependence of the oscillation of the Fermi 

energy on the magnetic field, temperature, and thickness of the quantum well with a 

quadratic dispersion law. As seen from formula (18), the oscillations of the density of 

energy states strongly affect the Fermi energies for two-dimensional electronic systems. 

Let us analyze the Fermi energy oscillations for two-dimensional semiconductors. In Fig.1 

shows the dependence of the Fermi energy oscillations on the quantizing magnetic field for 

InAs/GaSb/AlSb quantum wells at a constant temperature and at a constant thickness of the 

quantum well. Here, the temperatures are Т=4.2K, the thickness of the InAs/GaSb/AlSb 

quantum well is d=8 nm, the number of Landau levels is nL=10, G=0.6 meV, EF = 94 meV 

[20]. In this case, doped with Mn with a concentration of 5.1016 cm-3 on an n-InAs substrate 

and two quantum wells with dimensions of 12.5 nm (InAs) and 8 nm (GaSb) bounded by 

two AlSb barriers with a thickness of 30 nm [20]. As can be seen from the figure, as the 

magnetic field increases, the amplitude of the Fermi energy oscillations will increase. 
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( , , )F H T d  graph (Fig.1) was built using the formula (18). In addition, using formula (18), 

one can also obtain plots at different temperatures and at different thicknesses of quantum 

wells. 

We now turn to the calculation of the dependence of the Fermi energy oscillations on the 

thickness of the d quantum well in quantizing the magnetic field with a parabolic dispersion 

law. We are interested in changes in the Fermi energy oscillations 𝜇𝐹(𝐻, 𝑇, 𝑑) at different 

d and at a constant temperature. It is seen that formula (18), 𝜇𝐹(𝐻, 𝑇, 𝑑) is inversely 

proportional to d2 with other constant values. In Fig.2 shows the oscillations of the Fermi 

energy in a quantizing the magnetic field at different thicknesses of the d quantum well. 

 

Fig.1. Dependence of the Fermi energy oscillations on the quantizing magnetic field for 

InAs / GaSb / AlSb quantum wells at Т=4.2 K, d=8 nm. Calculated by formula (18). 

 

 Fig.2. Influence of the thickness of the quantum well on the oscillations of the Fermi 

energy in a quantizing magnetic field. Here, Т=4.2 K is calculated by formula (18) for 

InAs/GaSb/AlSb quantum wells. 1) d = 8 nm, 2) d = 5 nm. 

As can be seen from the figure, a decrease in the thickness of the d quantum well leads to 

an upward movement of the Fermi oscillations. Modern scientific literature indicates that 

http://www.neojournals.com/


Neo Scientific Peer Reviewed Journal 
Volume 7, Feb. 2023   ISSN (E): 2949-7752 

www.neojournals.com 

=============================================================== 

=============================================================== 

Page | 41  

This work is published under CC BY-NC-ND 4.0 

in the absence of a magnetic field, the amplitude of the Fermi energy oscillations strongly 

depends on the thickness of the d quantum well. 

However, as can be seen from Fig.2. The increase in amplitude depends only on the value 

of the magnetic field, and the thickness of the d quantum well leads to its motion along the 

𝜇𝐹(𝐻, 𝑇, 𝑑) axis. 

 

2.3. Calculation of the Fermi-Dirac function distribution in two-dimensional 

semiconductor materials at high temperatures and weak magnetic fields. 

Under the condition of the one-electron approximation, each electron moves independently 

of other particles, that is, the interaction between the electrons of a semiconductor is taken 

into account only by means of a self-consistent field. An ideal gas of electrons obeys the 

statistics of the Fermi-Dirac function in a state of statistical equilibrium. In a certain 

quantum state, the average number of free electrons is characterized by three quantum 

numbers at statistical equilibrium and has the following form: 

0

1
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1 exp

f E T
E

kT


=

−
+

    (19) 

In this case, at low temperatures, the 
0 ( , )f E T function takes on a stepped shape. In intrinsic 

semiconductors, at absolute temperature, the Fermi energy is equal to 
2

Eg
− , that is, the 

Fermi level is located in the middle of the band gap. 

The question arises: how is the Fermi level located in the forbidden gaps of intrinsic 

semiconductors when exposed to a quantizing magnetic field for two-dimensional electron 

gases? How will the distribution of the Fermi-Dirac function change in the presence of a 

magnetic field and temperature? 

Let us consider the change in the 0 ( , )f E T  function at low temperatures and in the presence 

of a magnetic field in two-dimensional materials. It can be seen from formulas (19) that the 

Fermi level is not dependent on the magnetic field. If substituting (16), (17), and (18) into 

formula (19), then we can define the 0 ( , , , )f E T H d  functions: 
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(20)   

Thus, using formula (20), one can estimate the dependence of the distribution of the Fermi-

Dirac function on the magnetic field, on the thickness of the quantum well, and on the 

temperature in low-dimensional solid materials with a parabolic dispersion law. The 

obtained formulas (20) are a essential result for quantum oscillatory phenomena in 
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heterostructures based on a quantum well. Therefore, when modulating the density of 

energy states at the Fermi level by a magnetic field, oscillations of the magnetoresistance, 

oscillations of the magnetic susceptibility and oscillations of quantum effects in two-

dimensional electron gases under the action of a strong magnetic field and low temperatures 

are observed. In particular, in this work [21] magnetophonon oscillations were observed in 

InAs/GaSb quantum well samples in a wide temperature range T=2.7÷270 K grown on a 

semi-insulating InAs substrate, without applying contacts. Here, a structure including InAs 

(12.5 nm) and GaSb (8 nm), i.e., a double quantum well, was grown on an InAs (100) 

substrate with an electron concentration n=5×1016 cm-3, with an InAs buffer nanolayer (30 

nm) and limited by high barriers AlSb 30 nm thick. For GaSb, the band gap is 0.813 eV 

[22] at low temperatures. In this case, there are no impurity states, that is, the Fermi level 

passes through the center (0.4065 eV) of the GaSb band gap at H=0, and this is clearly seen 

from Fig.3a for GaSb (dashed line). In addition, Fig.3a shows the form of the Fermi-Dirac 

distribution function at d=8 nm, B=14 T, and T=2.7 K and at ν=1 (the number of electron 

filling factors) for an InAs/GaSb quantum well (solid line). These results were obtained 

using formula (20). As can be seen from these figures, the hub-shaped distribution of the 

Fermi-Dirac function will not change in the absence and presence of a magnetic field and 

at low temperatures. The question arises: These functions, what will happen when the 

temperature rises and in the presence of a quantizing magnetic field? An increase in 

temperature leads to some "smearing" of the Fermi step boundary: instead of a jump-like 

change from 1 to 0, the distribution function makes a smooth transition (Fig.3b, Fig.3c, 

Fig.3d, dashed line). However, for an InAs/GaSb quantum well (d=8 nm) at strong magnetic 

fields (B=14 T) and at temperatures T=30 K, T=100 K, and T=300 K, the Fermi step almost 

does not change the shape, that is, everything level, up to the Fermi level, are occupied by 

electrons (Fig.3b, Fig.3c, Fig.3d, solid line). This means that for two-dimensional materials 

in a quantizing magnetic field and at high temperatures, all levels above the Fermi level are 

empty. In Fig.4a and Fig.4b show a three-dimensional image for an InAs/GaSb quantum 

well at H=0 and at H≠0. In these figures, the graphs of the dependence of the Fermi-Dirac 

distribution on temperature and energy are obtained for different magnetic fields. 

 

 
a) 
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b) 

 
c) 

 

 
d) 

Fig.3. Distribution of the Fermi-Dirac function in nanoscale semiconductors at high 

temperatures and weak magnetic fields. Calculated by formula (20) 
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a) 

 

 
b) 

Fig.4. Distribution of the Fermi-Dirac function for nanoscale semiconductors in three-

dimensional space at a constant magnetic field (B=8 T). Calculated by formula (20). 

 

 This process can be explained in two ways. Firstly, the exponent in the numerator 

is two exponential functions in formula (20), that is, 

2
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( )0 , ( 0),Ff E E H T dE=
. 

These functions lead to a hub-shaped Fermi-Dirac distribution at high temperatures. 

Another simple conclusion is that at high temperatures and with strong and weak magnetic 

fields, quantization (oscillations) of the Fermi energy can be observed in two-dimensional 
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materials. These results give the possibility of some experimental data for oscillatory 

phenomena at high temperatures and weak magnetic fields. 

Now, to analyze functions (19) and (20), consider its energy derivative: 
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 As is known, for Т→0 and 1/kT→, functions (21) and (22) are delta-shaped 

functions. 

 
a) 
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b) 

 

Fig.5. Derivative of the Fermi-Dirac function in nanoscale semiconductors at high 

temperatures and weak magnetic fields.  

a) calculated by formula (21); b) calculated by formula (22). 

 

 In Fig.5a shows the 3D space in the absence of a magnetic field. These graphs are 

created using formula (21). As can be seen from these figures, as the temperature rises, the 

height of the “bell” decreases, while its “width” increases. There is also shown for 

comparison the graph of the function, which is the derivative of the Fermi-Dirac function 

for the InAs/GaSb quantum well (d=8 nm) at strong magnetic fields (B=14 T) (Fig.5b). It 

can be seen from the figure that the width of the 0 ( , , , )f E T H d

E




 function is smaller and the 

height is higher than the height of the 0 ( , )f E T

E




. This is an important result, indicating that 

the 0 ( , , , )f E T H d

E




 function is much more efficient and tends more rapidly to the ideal δ-

shaped function in two-dimensional materials at high temperatures and weak magnetic 

fields. 

 

III. Comparison of theory with experimental results. 

In recent years, two-dimensional semiconductor materials have been the subject of intense 

theoretical and experimental studies and represent a dynamically developing field of 

semiconductor physics. The application of a strong magnetic field to two-dimensional 

semiconductor materials is a powerful tool for experimentally determining the basic 

parameters of the materials, that is, their effective mass, Fermi energy, and electron 

concentration. In quantizing magnetic fields, these parameters determine the relevance of 
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experimental and theoretical studies of the magnetooptical and electronic properties of 

nanoscale semiconductor devices and heterostructures based on them. 

Now, let us analyze the Fermi energy oscillations of specific low-dimensional materials in 

a quantizing magnetic field. In Fig.6 shows the Fermi energy oscillations when measuring 

m= 0.0665m0, N=8.1011 cm2, G=0.5 meV, and T=6 K for two-dimensional electron gases 

in quantum wells (quantum wells, mainly GaAs/GaAlAs heterostructures) [19]. Let us 

calculate this graph of the quantized Fermi energy in terms of 𝜇𝐹(𝐻, 𝑇, 𝑑)-functions. When 

calculating the initial value, take the ideal 𝜇𝐹(𝐻, 𝑇, 𝑑) by formula (18). A comparison of 

the theory with experiment is shown in Fig.6 at various magnetic fields and constant 

temperatures. Using formula (18), it is possible to plot 𝜇𝐹(𝐻, 𝑇, 𝑑) graphs at high 

temperatures and at different quantum well thicknesses for quantum wells, mainly 

GaAs/GaAlAs heterostructures. It can be seen that the Fermi energy at a constant electron 

density is quantized rather strongly as a function of B in the theoretical and experimental 

plots in Fig.6. 

 

Conclusions 

Based on the research, the following conclusions can be drawn:  

1. It is shown that the Fermi levels of a nanoscale semiconductor in a quantized magnetic 

field are quantized.  

2. A method is proposed for calculating the Fermi energy oscillations for a two-dimensional 

electron gas at different magnetic fields and temperatures.  

3. An analytical expression for calculating the Fermi-Dirac distribution function at high 

temperatures and weak magnetic fields is obtained  

4. Using the proposed formula, the experimental results in nanosized semiconductor 

structures are investigated. Using formula (18), the Fermi energy oscillations are explained 

for two-dimensional electron gases in quantum wells (quantum wells, mainly 

GaAs/GaAlAs heterostructures) with a parabolic dispersion law. 

 
Fig.6. Oscillations of the Fermi energy when measuring m = 0.0665m0, N=8.1011 cm2, 

G=0.5 meV, and T=6 K for two-dimensional electron gases in quantum wells (quantum 

wells, mainly GaAs/GaAlAs heterostructures) 

1-experiment [19]; 2-theory calculated by formula (18). 

 

http://www.neojournals.com/


Neo Scientific Peer Reviewed Journal 
Volume 7, Feb. 2023   ISSN (E): 2949-7752 

www.neojournals.com 

=============================================================== 

=============================================================== 

Page | 48  

This work is published under CC BY-NC-ND 4.0 

Data Availability 

No data were used to support this study. 

 

Conflict of Interest 

The authors declare that they have no conflicts of interest. 

 

REFERENCES 

1. Yuzeeva N.A., Galiev G.B., Klimova E.A., Oveshnikov L.N., Lunin R.A., 

Kulbachinskii V.A. Experimental determination of the subband electron effective mass 

in InGaAs/InAlAs HEMT-structures by the Shubnikov - de Haas effect at two 

temperatures // Physics Procedia. 2015. Vol.72, pp.425-430. 

https://doi.org/10.1016/j.phpro.2015.09.087 

2. Tarquini V., Knighton T.,Wu Zh., Huang J., Pfeiffer L., West K. Degeneracy and 

effective mass in the valence band of two-dimensional (100)-GaAs quantum well 

systems // Applied Physics Letters. 2014. Vol.104, Iss.9, Article ID 092102. 

https://doi.org/10.1063/1.4867086 

3. Berkutov I.B., Andrievskii V.V., Komnik Yu.F., Kolesnichenko Yu.A., Morris R.J.H., 

Leadley D.R. Magnetotransport studies of SiGe-based p-type heterostructures: 

Problems with the determination of effective mass // Low Temperature Physics. 2012. 

Vol.38, Iss.12, pp.1145-1452. https://doi.org/10.1063/1.4770520 

4. Abdullah Yar, Kashif Sabeeh. Radiation-assisted magnetotransport in two-

dimensional electron gas systems: appearance of zero resistance states // Journal of 

Physics: Condensed Matter. 2015. Vol.27, No.43, Article ID 435007. 

https://doi.org/10.1088/0953-8984/27/43/435007 

5. Bogan A., Hatke A.T., Studenikin S.A., Sachrajda A.,  Zudov M.A., Pfeiffer L.N., 

West K.W. Effect of an in-plane magnetic field on microwave photoresistance and 

Shubnikov-de Haas effect in high-mobility GaAs/AlGaAs quantum wells // Journal of 

Physics: Conference Series. 2013. Vol.456, Article ID 012004. 

https://doi.org/10.1088/1742-6596/456/1/012004 

6. Erkaboev U.I, Rakhimov R.G., Sayidov N.A. Influence of pressure on Landau levels 

of electrons in the conductivity zone with the parabolic dispersion law // Euroasian 

Journal of Semiconductors Science and Engineering. 2020. Vol.2., Iss.1. 

7. Rakhimov R.G. Determination magnetic quantum effects in semiconductors at 

different temperatures // VII Международной научнопрактической конференции 

«Science and Education: problems and innovations». 2021. pp.12-16. 

https://elibrary.ru/item.asp?id=44685006 

8. Gulyamov G, Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Influence of 

a strong magnetic field on Fermi energy oscillations in two-dimensional 

semiconductor materials // Scientific Bulletin. Physical and Mathematical Research. 

2021. Vol.3, Iss.1, pp.5-14 

9. Erkaboev U.I., Sayidov N.A., Rakhimov R.G., Negmatov U.M. Simulation of the 

temperature dependence of the quantum oscillations’ effects in 2D semiconductor 

http://www.neojournals.com/
https://doi.org/10.1016/j.phpro.2015.09.087
https://aip.scitation.org/journal/apl
https://doi.org/10.1063/1.4867086
https://doi.org/10.1063/1.4770520
https://iopscience.iop.org/journal/0953-8984
https://iopscience.iop.org/journal/0953-8984
https://doi.org/10.1088/0953-8984/27/43/435007
https://iopscience.iop.org/journal/1742-6596
https://iopscience.iop.org/journal/1742-6596
https://doi.org/10.1088/1742-6596/456/1/012004
https://elibrary.ru/item.asp?id=44685006
https://scholar.google.com/scholar?cluster=5032313180154727690&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=5032313180154727690&hl=en&oi=scholarr


Neo Scientific Peer Reviewed Journal 
Volume 7, Feb. 2023   ISSN (E): 2949-7752 

www.neojournals.com 

=============================================================== 

=============================================================== 

Page | 49  

This work is published under CC BY-NC-ND 4.0 

materials // Euroasian Journal of Semiconductors Science and Engineering. 2021. 

Vol.3., Iss.1.  

10. Gulyamov G., Erkaboev U.I., Rakhimov R.G., Mirzaev J.I. On temperature 

dependence of longitudinal electrical conductivity oscillations in narrow-gap 

electronic semiconductors // Journal of Nano- and Electronic Physic. 2020. Vol.12, 

Iss.3, Article ID 03012. https://doi.org/10.1142/S0217979220500526 

11. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G. Modeling on the 

temperature dependence of the magnetic susceptibility and electrical conductivity 

oscillations in narrow-gap semiconductors // International Journal of Modern Physics 

B. 2020. Vol.34, Iss.7, Article ID 2050052. 

https://doi.org/10.1142/S0217979220500526 

12. Erkaboev U.I., R.G.Rakhimov. Modeling of Shubnikov-de Haas oscillations in narrow 

band gap semiconductors under the effect of temperature and microwave field // 

Scientific Bulletin of Namangan State University. 2020. Vol.2, Iss.11. pp.27-35 

13. Gulyamov G., Erkaboev U.I., Sayidov N.A., Rakhimov R.G. The influence of 

temperature on magnetic quantum effects in semiconductor structures // Journal of 

Applied Science and Engineering. 2020. Vol.23, Iss.3, pp. 453–

460.https://doi.org/10.6180/jase.202009_23(3).0009 

14. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G.,  Sayidov N.A. Calculation 

of the Fermi–Dirac Function Distribution in Two-Dimensional Semiconductor 

Materials at High Temperatures and Weak Magnetic Fields // Nano. 2021. Vol.16, 

Iss.9. Article ID 2150102.  https://doi.org/10.1142/S1793292021501022 

15. Ch.T., Chiu P.Y., Liu Ch.Y., Kao H.Sh., Harris C.Th., Lu T.M., Hsieh Ch.T., Chang 

Sh.W.,  Li J.Y. Strain Effects on Rashba Spin-Orbit Coupling of 2D Hole Gases in 

GeSn/Ge Heterostructures // Advanced Materials. 2021. Vol.33, Iss.26, Article ID 

2007862. https://doi.org/10.1002/adma.202007862 

16. Erkaboev U.I., R.G.Rakhimov. Modeling the influence of temperature on electron 

landau levels in semiconductors // Scientific Bulletin of Namangan State University. 

2020. Vol.2, Iss.12. pp.36-42 

17. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G., Sayidov N.A. Calculation 

of the Fermi-Dirac Function Distribution in Two-Dimensional Semiconductor 

Materials at High Temperatures and Weak Magnetic Fields // Nano. 2021. Vol.16, 

Iss.9, Article ID 2150102.https://doi.org/10.1142/S0217984921502936 

18. Erkaboev U.I., Rakhimov R.G., Sayidov N.A. Mathematical modeling determination 

coefficient of magneto-optical absorption in semiconductors in presence of external 

pressure and temperature // Modern Physics Letters B.2021. Vol.35, Iss.17, Article ID 

2150293.https://doi.org/10.1142/S0217984921502936 

19. Erkaboev U.I., Rakhimov R.G., Mirzaev J.I., Sayidov N.A. The influence of external 

factors on quantum magnetic effects in electronic semiconductor structures //  

International Journal of Innovative Technology and Exploring Engineering. 2020. 

Vol.9, Iss.5, pp. 1557-1563. https://www.ijitee.org/portfolio-item/e2613039520/ 

http://www.neojournals.com/
https://scholar.google.com/scholar?cluster=5032313180154727690&hl=en&oi=scholarr
https://doi.org/10.1142/S0217979220500526
https://doi.org/10.1142/S0217979220500526
https://www.scopus.com/authid/detail.uri?authorId=6602176343
https://www.scopus.com/authid/detail.uri?authorId=56465989500
https://www.scopus.com/authid/detail.uri?authorId=57219605720
https://www.scopus.com/authid/detail.uri?authorId=57215841856
https://doi.org/10.6180/jase.202009_23(3).0009
https://doi.org/10.1142/S1793292021501022
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Chiu%2C+Po-Yuan
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Liu%2C+Chia-You
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Kao%2C+Hsiang-Shun
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Harris%2C+C+Thomas
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Lu%2C+Tzu-Ming
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Hsieh%2C+Chi-Ti
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Chang%2C+Shu-Wei
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Li%2C+Jiun-Yun
https://doi.org/10.1002/adma.202007862
https://doi.org/10.1142/S0217984921502936
https://doi.org/10.1142/S0217984921502936
https://www.worldscientific.com/worldscinet/ijmpb
https://www.worldscientific.com/worldscinet/ijmpb
file:///C:/Users/RUSTAM/Desktop/Vol.9,%20Iss.5,%20pp.%201557-1563


Neo Scientific Peer Reviewed Journal 
Volume 7, Feb. 2023   ISSN (E): 2949-7752 

www.neojournals.com 

=============================================================== 

=============================================================== 

Page | 50  

This work is published under CC BY-NC-ND 4.0 

20. Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Modeling the temperature 

dependence of the density oscillation of energy states in two-dimensional electronic 

gases under the impact of a longitudinal and transversal quantum magnetic fields // 

Indian Journal of Physics. 2022. Vol.96, Iss.10, Article ID 02435. 

https://doi.org/10.1007/s12648-022-02435-8 

21. Erkaboev U.I., Negmatov U.M., Rakhimov R.G., Mirzaev J.I., Sayidov N.A. 

Influence of a quantizing magnetic field on the Fermi energy oscillations in two-

dimensional semiconductors // International Journal of Applied Science and 

Engineering. 2022. Vol.19, Iss.2, Article ID 2021123. 

https://doi.org/10.6703/IJASE.202206_19(2).004 

22. Erkaboev U.I., Gulyamov G., Rakhimov R.G. A new method for determining the 

bandgap in semiconductors in presence of external action taking into account lattice 

vibrations // Indian Journal of Physics. 2022. Vol.96, Iss.8, pp. 2359-2368. 

https://doi.org/10.1007/s12648-021-02180-4. 

 
 

http://www.neojournals.com/
https://www.scopus.com/authid/detail.uri?authorId=56465989500
https://www.scopus.com/authid/detail.uri?authorId=57215841856
https://www.scopus.com/authid/detail.uri?authorId=57219605720
https://www.scopus.com/authid/detail.uri?authorId=57215840258
https://doi.org/10.1007/s12648-022-02435-8
https://www.scopus.com/authid/detail.uri?authorId=56465989500
https://www.scopus.com/authid/detail.uri?authorId=57797621900
https://www.scopus.com/authid/detail.uri?authorId=57215841856
https://www.scopus.com/authid/detail.uri?authorId=57215840258
https://www.scopus.com/authid/detail.uri?authorId=57219605720
https://doi.org/10.6703/IJASE.202206_19(2).004
https://www.scopus.com/authid/detail.uri?authorId=56465989500
https://www.scopus.com/authid/detail.uri?authorId=6602176343
https://www.scopus.com/authid/detail.uri?authorId=57215841856
https://doi.org/10.1007/s12648-021-02180-4

