
DEVELOPMENT OF PROFESSIONAL COMPETENCE OF FUTURE INFORMATICS TEACHERS: A TIMELY IMPERATIVE

Otajonov Jamshidbek Mashrabjonovich

Fergana branch of TUIT, head of the Department (PhD)

Abstract:	Keywords:
<p>In an era characterized by rapid technological advancement and an unprecedented reliance on digital literacy, the role of informatics teachers has become paramount in shaping the next generation's technological proficiency. This scientific article delves into the critical issue of developing the professional competence of future informatics educators, recognizing it as an urgent and pivotal endeavor. The summation of this research aims to shed light on the multifaceted dimensions of this challenge and provide actionable insights for academia, educational policymakers, and practitioners alike.</p>	informatics education, professional competence, future teachers, pedagogical prowess, technological literacy, educational policy.

Introduction

The ubiquitous integration of information and communication technologies (ICTs) in all facets of contemporary society has ushered in an era where digital literacy stands as an essential skill set. In this landscape, the role of informatics teachers transcends mere instruction; they are the linchpin in cultivating a generation adept at harnessing the power of technology for innovation, communication, and problem-solving. However, the efficacy of these educators' hinges on their level of professional competence, a fact that demands immediate attention and systematic development.

The Significance of Professional Competence. The development of professional competence is a multifaceted process that extends beyond subject matter expertise. It encompasses pedagogical prowess, an understanding of evolving technological landscapes, and the ability to foster critical thinking and problem-solving skills in students. This article scrutinizes the key components of professional competence and examines their interplay in the context of preparing future informatics teachers.

Current Challenges and Disparities. An analysis of the existing educational landscape reveals a glaring disparity between the burgeoning demand for informatics education and the preparedness of future teachers to meet this need. Factors such as outdated curriculum frameworks, limited access to contemporary educational resources, and a dearth of professional development opportunities for educators exacerbate this disconnect. This section

=====

=====

delves into these challenges, providing a comprehensive overview of the obstacles impeding the development of professional competence among future informatics teachers.

Frameworks for Developing Professional Competence. Addressing the exigency of this issue necessitates a holistic approach that combines theoretical knowledge, practical skills, and pedagogical acumen. This section presents a synthesized framework that outlines a structured trajectory for the development of professional competence among future informatics teachers. It encompasses tailored curriculum designs, immersive experiential learning opportunities, and ongoing professional development initiatives.

Technology Integration and Innovation. As the very nature of informatics is inseparable from technological progress, it is imperative to explore avenues for integrating cutting-edge technologies into the pedagogical process. This section delves into innovative teaching methodologies, including augmented reality, artificial intelligence applications, and collaborative coding platforms, all of which hold immense potential in revolutionizing informatics education.

Case Studies and Best Practices. Drawing from exemplary instances worldwide, this section presents case studies of institutions and educators who have successfully navigated the terrain of professional competence development for future informatics teachers. These real-world examples offer tangible insights and actionable strategies for academia, policymakers, and practitioners seeking to address this urgent issue.

LITERATURE REVIEW

The development of professional competence in future informatics teachers emerges as a pivotal concern in contemporary education. This literature review synthesizes pertinent research and scholarship, shedding light on the urgent need to address this critical issue.

1. The Evolution of Informatics Education

Historically, informatics education primarily focused on imparting technical skills. However, contemporary perspectives emphasize a more holistic approach, recognizing the importance of pedagogical expertise, adaptability to technological advancements, and the ability to foster critical thinking. (Smith, 2019; Johnson et al., 2020)

2. Pedagogical Prowess and Technological Literacy

The fusion of pedagogical prowess with technological literacy is identified as a cornerstone in the development of professional competence for future informatics teachers. This entails a deep understanding of effective teaching methodologies, the ability to differentiate instruction, and the adept integration of technology to enhance learning outcomes. (Kim & Lee, 2018; Agyei & Voogt, 2018)

3. Curriculum Design and Content Relevance

An aligned curriculum design is essential for equipping future informatics teachers with the requisite knowledge and skills. This involves an updated curriculum framework that reflects the dynamic nature of the field, encompassing emerging technologies, programming languages, and contemporary applications. (Farrow, 2020; Alrasheedi et al., 2019)

4. Professional Development and Continuous Learning

The importance of ongoing professional development cannot be overstated. Research underscores the significance of providing future informatics teachers with opportunities for workshops, seminars, and collaborative learning experiences. Such initiatives serve to bridge the gap between theoretical knowledge and practical application, fostering a culture of continuous learning. (Kang et al., 2017; Deniz, 2021)

5. Technological Integration and Innovative Teaching Practices

Innovative teaching practices, including the integration of cutting-edge technologies like artificial intelligence, virtual reality, and collaborative coding platforms, have shown promise in enhancing the effectiveness of informatics education. These practices empower future teachers to create dynamic, interactive learning environments that engage and challenge students. (Bower et al., 2019; Gruener & Lutz, 2020)

6. Global Perspectives and Best Practices

Drawing from international case studies and best practices provides valuable insights into successful approaches for developing professional competence in future informatics teachers. Exemplary institutions and educators serve as beacons, illustrating the tangible impact of strategic initiatives and comprehensive training programs. (Rice & Satchwell, 2019; Chien et al., 2021)

7. Policy Implications and Stakeholder Collaboration

The role of educational policies and stakeholder collaboration in facilitating the development of professional competence cannot be overlooked. Policymakers play a pivotal role in shaping curriculum standards, allocating resources, and promoting professional development opportunities. Collaboration between academia, industry, and government entities fosters an ecosystem conducive to the growth of competent informatics educators. (Bingimlas, 2019; European Commission, 2020)

8. Future Directions and Recommendations

As the landscape of technology and education continues to evolve, it is imperative to anticipate future trends and challenges. Recommendations include a call for a comprehensive, interdisciplinary approach to informatics teacher preparation, with an emphasis on experiential learning, mentorship programs, and research-based pedagogical strategies. (Oliver, 2021; UNESCO, 2020)

In summation, the urgency of developing professional competence in future informatics teachers resonates across the academic, policy, and practitioner domains. This literature review provides a comprehensive foundation for understanding the multifaceted dimensions of this imperative, offering a springboard for informed discourse and actionable initiatives in the pursuit of a technologically proficient generation.

RESEARCH METHODOLOGY

The development of professional competence in future informatics teachers demands a rigorous and multi-faceted research approach. This section outlines the methodology

employed in this scientific article, delineating the steps taken to investigate and address the urgent issue at hand.

1. Research Design

Given the complexity of the topic, a mixed-methods research design was adopted to triangulate findings and gain a comprehensive understanding. This approach combined both quantitative and qualitative methods to provide a well-rounded perspective on the development of professional competence among future informatics teachers.

2. Literature Review

A thorough literature review was conducted to establish a foundational understanding of the current state of informatics education, the challenges faced, and existing best practices. This review informed the conceptual framework and guided the formulation of research questions and hypotheses.

3. Survey Instrument

A structured survey instrument was developed to gather quantitative data from a diverse sample of informatics educators, education policymakers, and stakeholders. The survey included questions addressing various facets of professional competence, including pedagogical skills, technological literacy, curriculum relevance, and access to professional development opportunities.

4. Interviews and Focus Groups

Semi-structured interviews and focus group discussions were conducted to capture in-depth qualitative insights from a subset of participants. This qualitative arm of the study provided a platform for participants to elaborate on their experiences, perspectives, and recommendations regarding the development of professional competence.

5. Participant Selection

A purposive sampling strategy was employed to ensure a diverse representation of informatics educators, educational policymakers, and stakeholders. Participants were selected based on their expertise, experience, and roles in informatics education.

6. Data Collection

Data collection was carried out through a combination of online surveys, virtual interviews, and virtual focus group sessions. This approach facilitated broad participation and allowed for the inclusion of stakeholders from various geographical locations.

7. Data Analysis

Quantitative data from the surveys were subjected to rigorous statistical analysis using appropriate software. Descriptive statistics, inferential tests, and regression analyses were performed to discern patterns, correlations, and significant relationships between variables.

Qualitative data from interviews and focus groups were transcribed, coded, and analyzed using thematic analysis techniques. Emerging themes and patterns were identified to enrich the understanding of the qualitative dimensions of professional competence development.

8. Triangulation and Integration

Quantitative and qualitative findings were compared and integrated to provide a comprehensive overview of the research questions. Triangulation was used to validate and corroborate results, ensuring a robust and reliable interpretation of the data.

9. Ethical Considerations

Ethical principles, including informed consent, confidentiality, and voluntary participation, were strictly adhered to throughout the research process. Institutional review board (IRB) approval was obtained to ensure compliance with ethical standards.

10. Limitations and Delimitations

The study acknowledges certain limitations, including potential sampling biases and constraints imposed by the online research environment. Additionally, the study's focus on a specific demographic of informatics educators may limit generalizability to broader educational contexts.

By employing a comprehensive mixed-methods approach, this research endeavors to provide a nuanced understanding of the urgent issue of developing professional competence in future informatics teachers. The integration of quantitative and qualitative data ensures a robust foundation for evidence-based recommendations and actionable strategies in addressing this critical challenge.

CONCLUSION

In the rapidly evolving landscape of information and communication technologies, the role of informatics teachers stands as a linchpin in shaping the technological proficiency of future generations. This scientific article has undertaken a comprehensive exploration of the urgent issue surrounding the development of professional competence among future informatics educators. The findings and analyses presented herein converge to provide a roadmap for informed discourse and actionable initiatives in this critical domain.

Urgency of Professional Competence Development

The imperative to develop professional competence in future informatics teachers is underscored by the dynamic nature of the field. As technology advances at an unprecedented pace, the proficiency of educators in seamlessly integrating pedagogical prowess with technological literacy becomes paramount. The survey data, interviews, and focus group discussions collectively highlight a pressing need for targeted training programs, curriculum reform, and sustained professional development opportunities.

Bridging the Gap: Pedagogy and Technology

A notable finding is the existing gap between pedagogical prowess and technological literacy. While participants acknowledged the importance of both dimensions, a significant proportion expressed a lack of preparedness in effectively integrating technology into their teaching practices. This underscores the urgency of tailored training programs that equip future informatics teachers with the skills and knowledge necessary to leverage technology as a powerful educational tool.

Curriculum Relevance and Dynamism

The study illuminates a critical concern regarding the relevance and adaptability of current informatics curricula. The call for more dynamic frameworks that mirror the ever-evolving technological landscape is resounding. To meet this demand, educational institutions and policymakers must collaborate to ensure that curriculum content remains current, encompassing emerging technologies, programming languages, and contemporary applications.

Empowering Educators: Professional Development Initiatives

Access to professional development opportunities emerges as a pivotal factor in enhancing the professional competence of future informatics teachers. The study highlights the need for sustained, accessible initiatives that nurture continuous learning. Institutions and policymakers must invest in workshops, seminars, mentorship programs, and collaborative learning experiences tailored specifically for informatics educators.

Stakeholder Collaboration: A Catalyst for Change

Stakeholder collaboration emerges as a cornerstone in fostering the development of professional competence. The collective efforts of academia, industry stakeholders, and government entities are instrumental in creating an ecosystem conducive to teacher development. Recommendations for active engagement, resource allocation, and policy formulation are pivotal in propelling this collaborative endeavor forward.

A Call to Action

In conclusion, the urgency to develop professional competence in future informatics teachers is unequivocal. The amalgamation of pedagogical prowess with technological literacy, curriculum relevance, and sustained professional development initiatives is pivotal in preparing educators to navigate the complexities of the digital age. By heeding the recommendations outlined in this article, academia, educational policymakers, and practitioners can collectively pave the way for a more technologically adept and empowered generation.

REFERENCES

1. Agyei, D. D., & Voogt, J. (2018). Exploring the Potential of Using Multimedia Cases in Professional Development for Informatics Teachers. **Journal of Information Technology Education: Research**, 17, 119-141.
2. Alrasheedi, M., Capretz, L. F., & Raza, S. (2019). An Empirical Study on Challenges of Teaching Software Engineering in Saudi Arabian Universities. *IEEE Access*, 7, 110845-110860.
3. Bingimlas, K. A. (2019). Barriers to the Successful Integration of ICT in Teaching and Learning Environments: A Review of the Literature. *Eurasia Journal of Mathematics, Science and Technology Education*, 15(7), em1730.

4. Bower, M., Sturman, D., & King, L. (2019). Can Virtual Reality Improve Anatomy Education? A Randomised Controlled Study of a Computer-Generated Three-Dimensional Anatomical Ear Model. *Anatomical Sciences Education*, 12(6), 621-632.
5. Chien, Y. H., Wu, Y. C., & Wu, W. H. (2021). Factors Influencing Computer Science Teachers' Attitude Toward Teaching Programming: A Structural Equation Model Approach. *Computers & Education*, 174, 104305.
6. Deniz, D. (2021). Online Professional Development for In-Service Teachers: An International Comparative Study. *Educational Sciences: Theory & Practice*, 21(3), 54-71.
7. European Commission. (2020). *Digital Education Action Plan*. Retrieved from https://ec.europa.eu/education/education-in-the-eu/digital-education-action-plan_en
8. Farrow, S. (2020). Designing a Flexible and Scalable Computer Science Curriculum for K-8. Doctoral dissertation, Georgia Institute of Technology.
9. Gruener, D., & Lutz, C. (2020). The Use of Augmented Reality in Teaching Informatics. *Education and Information Technologies*, 25(3), 1945-1959.
10. Johnson, L. A., Clements, D. H., & Maglo, A. (2020). Preparing Teachers to Teach Data Science and Computational Thinking. *Journal of Computers in Mathematics and Science Teaching*, 39(1), 7-27.
11. Sultonov, S. (2023). MASHINALI O'QITISH TUSHUNCHASI VA MASHINALI O'QITISH JARAYONINING UMUMIY QADAMLARI. *Engineering problems and innovations*.
12. Хайдаров, А., Султонов, С., & Билолов, И. (2022). ВЛИЯНИЕ ОТЖИГА НА РАЗМЕРЫ КРИСТАЛЛИЧЕСКИХ ЛАМЕЛЕЙ ПОЛИКАПРАМИДА. *Theoretical aspects in the formation of pedagogical sciences*, 1(7), 319-321.
13. Mashrabjonovich, O. J. (2023). Formation of Professional Competence of the Future Teacher in the Information and Educational Process. *Central Asian Journal of Social Sciences and History*, 4(2), 107-111.
14. Mashrabjonovich, O. J., & Nargiza, K. (2022). Development of Creative Abilities in Pupils of Preparatory Groups. *Journal of Intellectual Property and Human Rights*, 1(10), 106-109.
15. Otajonov, J. (2023). LEVERAGING THE INFORMATION EDUCATIONAL ENVIRONMENT FOR FOSTERING PROFESSIONAL COMPETENCE IN FUTURE INFORMATICS STUDENTS. *Евразийский журнал технологий и инноваций*, 1(9), 99-102.
16. Isroilov, S. (2023). PEDAGOGIK FAOLIYATDA TA'LIM METODLARI VA INNOVATSION METODLARNING O'RNI VA AFZALLIK TOMONLARI. *Engineering problems and innovations*.
17. Maxammadyusufovich, I. S. (2022). savdo tarmoqlarida axborot almashinuvini va avtomatlashtirilgan monitoring. *Journal of new century innovations*, 7(3), 13-16.
18. Ражабов, М. Ж., & Ражабова, Х. Х. (2022). МАНИПУЛЯЦИЯ ТУРЛАРИ ВА ОДАМЛАРДА РЕПРЕЗЕНТАТИВ ТИЗИМНИНГ ИФОДАЛАНИШИ: Ражабов

Муродил Жумабоевич, Фарғона давлат университети катта ўқитувчиси. *Образование и инновационные исследования международный научно-методический журнал*, (6), 262-266.

19. Rajabova, X. X., & Dekhanova, M. B. (2023). TA'LIM MUASSASALARIDA TA'LIM SIFATI TA'LIM-TARBIYA JARAYONINING PIROVARD NATIJASI SIFATIDA. *Academic research in educational sciences*, 4(TMA Conference), 251-255.
20. Орипова, Н. Х., & Ражабова, Х. Х. (2015). Исторические источники воспитания преданности Родине. *Молодой ученый*, (6), 666-668.
21. Abdullajonova, N. (2023). PYTHON DASTURLASH TILIDA CHIZIQLI REGRESSIYA TASHKIL QILISHNING SODDA USULLARI. *Engineering problems and innovations*.
22. Saidov , M., & Isroilov, S. (2023). TO'RTINCHI TARTIBLI BIR JINSLI BO'LMAGAN TENGLAMA UCHUN ARALASH MASALA. *Research and Implementation*. извлечено от <https://fer-teach.uz/index.php/rai/article/view/987>
23. Sultonov, S. (2023). IMPORTANCE OF PYTHON PROGRAMMING LANGUAGE IN MACHINE LEARNING. *International Bulletin of Engineering and Technology*, 3(9), 28-30.
24. Рахманов, А. Т., & Султонов, С. (2023). ОБ ОДНОМ СПОСОБЕ РЕШЕНИЯ ЗАДАЧИ КЛАССИФИКАЦИИ. *Евразийский журнал математической теории и компьютерных наук*, 3(9), 45-48.
25. Rajabova X. BO'LAJAK O'QITUVCHILARNING AXBOROT KOMPETENSIYASINI RIVOJLANTIRISH //International Bulletin of Engineering and Technology. – 2023. – Т. 3. – Yo‘q. 9. – 56-60-betlar.